

If there are two instances of said variable, get them on the same side of the variable, then divide by the extra binomial coefficient

$$
\begin{aligned}
& \text { Solving for a specified variable, clear } \\
& \text { fractions, distribute through parentheses }
\end{aligned}
$$

$$
\begin{aligned}
& \text { fractions, distribute through parenthess } \\
& \text { and solve for the variable in question }
\end{aligned}
$$

number, the inequality switches

$$
\left\{\begin{array}{l}
\text { If the inequality has an }=\text {, the }\{\text { or }\} \text { is } \\
\text { used. If if tis iust }<\text { or } \geqslant \text { then }(\text { or }) \text {, }
\end{array}\right.
$$

$$
\begin{aligned}
& \text { If the inequality has an }=\text {, the }\{\text { or }\} \text { is } \\
& \text { used. If it is just < or }>\text {, then (or) is used }
\end{aligned}
$$

Change to equation (see above) and

$$
\begin{aligned}
& \text { Change to equation (see above) al } \\
& \text { number line check for final answer }
\end{aligned}
$$

Change to equation (see above) and number line check for final answer

Plot 2 points, draw a solid or dashed line, and shade above or below
Repeat for each linear inequality, always
Repeat for each inear inequality, alway
newly shading only what has already
been shaded by the previous work
Find vertices formed by solving 2 bu 2 _ 2 variable system consisting of the two equations that are crossing at the vertex

