Math 1010 Final Exam Form B, Fall 2009

Name:	k	(E)		

Instructor:

ID verification:

Each problem is equally weighted. Scientific calculators are permitted.

Time limit: Two hours.

Not allowed: notes, books, graphing/programable calculators, cell phones or other hand held devices.

Find the exact solution. If no solution exists, state this.

1)
$$2^{(2x+1)} = 32$$

A)
$$x = 4$$

B)
$$x = 2$$

C)
$$x = 3$$

D)
$$x = 16$$

$$X = \lambda$$

Simplify. Write the answer using positive exponents only. Leave the answer in exponential notation.

$$2)\left[\frac{2x^{3}y^{-3}}{x^{-3}y^{4}}\right]^{-5} = \frac{2^{-5} \times 15^{-15}}{15^{15}} = \frac{15^{15}}{2^{5} \times 15^{15}} = \frac{15^{15}}{2^{5}} =$$

$$\frac{15}{x^{15}} = \frac{y^{30}}{32}$$

A)
$$\frac{-8x^{30}}{y^{35}}$$

B)
$$\frac{y^{35}}{2x^6}$$

C)
$$\frac{y^{35}}{2x^{30}}$$

C) 36 mph

D)
$$\frac{y^{35}}{32x^{30}}$$

Solve.

3) A helicopter goes 270 miles with the wind in the same time it can go 180 miles against the wind. The speed of the wind is 6 miles per hour. Find the speed of the helicopter with no wind.

A) 45 mph R+6

Solve for m.

4)
$$3m^2 + 8m + 1 = 0$$

A) m =
$$\frac{-4 \pm \sqrt{13}}{6}$$

B) m =
$$\frac{-4 \pm \sqrt{19}}{3}$$

C) m =
$$\frac{-8 \pm \sqrt{13}}{3}$$

A)
$$m = \frac{-4 \pm \sqrt{13}}{6}$$
 B) $m = \frac{-4 \pm \sqrt{19}}{3}$ C) $m = \frac{-8 \pm \sqrt{13}}{3}$ D) $m = \frac{-4 \pm \sqrt{13}}{3}$

5-4ac = 8 -413/11

$$m = -b + \sqrt{5^2 - 4aC}$$

$$7a$$

$$m = -8 + \sqrt{5^2}$$

$$-8 + \sqrt{5^$$

Solve.

5)
$$\sqrt{5q+6} = 6$$

A) $q = \frac{42}{5}$

=64-12=5)

B)
$$q = 36$$

$$C) q = 6$$

D)
$$q = \frac{36}{5}$$

59 = 30 50 John owns a hotdog stand. He has found that his profit is represented by the equation $P = -x^2 + 64x + 82$, with P being the profit in dollars, and x the number of hotdogs sold. How many hotdogs must be sell to earn the most profit?

2

- A) 25 hotdogs
- B) 32 hotdogs
- C) 33 hotdogs
- D) 50 hotdogs

most profit => MAX = VERTEX

$$x = -\frac{1}{3a} = -\frac{64}{3(-1)} = 32$$

Find the exact solution. If no solution exists, state this.

7)
$$\log_2(3x - 3) = 1$$

A)
$$x = 2$$

B)
$$x = \frac{5}{3}$$

C)
$$x = \frac{5}{4}$$

D) No solution

Graph the system of linear inequalities.

2X+y = 4 X | Y 0 | 4 2 | 0 Shadebolow SOLID Y-120 Y < 1 CROSES Y => HORIZONTAL SHADES BELOW. DASHED

Perform the indicated operation and simplify. Write the answer in the form a + bi.

B)
$$18i + 6i^2$$

$$C) - 6 + 18i$$

$$D) 6 + 18i$$

Find the center and the radius of the circle.

10)
$$x^2 + y^2 + 6x - 40 = 0$$

A)
$$(-3, 0)$$
, $r = 7$

A)
$$(-3, 0)$$
, $r = 7$ B) $(-3, 0)$, $r = 49$

C)
$$(3, 0)$$
, $r = 7$

D)
$$(3, 0)$$
, $r = 49$

$$x^{2} + 6x + 9 + y^{2} = 40 + 9$$

 $(x+3)^{2} + y^{2} = 49$

Find the distance between the pair of points. Give your answer in exact form.

A)
$$2\sqrt{13}$$

$$\Delta = \sqrt{(x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2}}$$

$$= \sqrt{(x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2}}$$

B)
$$20\sqrt{5}$$

A)
$$2\sqrt{13}$$
B) $20\sqrt{5}$
C) -2
D) 10

$$d = \sqrt{(4)^2 + (-6)^2}$$

$$= \sqrt{(1-3)^2 + (-4-2)^2}$$

$$= \sqrt{16+36}$$
D) 10

$$d = \sqrt{52}$$

$$4-13$$

$$= \sqrt{16+36}$$

$$d = \sqrt{52}$$
 $\sqrt{d = 2\sqrt{13}}$

Solve the equation.

12)
$$x^3 + 10 = 10x^2 + x$$

A) {10, 1, -10}

$$x^{3}+10 = 10x^{2}+x$$

$$\chi^{2}(\chi - 10) - 1(\chi - 10) = 0$$

$$x^{3} + 10 = 10x^{2} + x$$

$$-0x^{2} - x - 10x - x$$

$$(x - 10)(x^{2} - 1) = 0$$

$$(x - 10)(x + 1)(x - 1) = 0$$

13)
$$|5x + 8| = |x - 1|$$

A) $\left\{-\frac{9}{4}, -\frac{7}{6}\right\}$

$$C)\left\{\frac{9}{4},\frac{7}{6}\right\}$$

D)
$$\left\{-\frac{9}{4}\right\}$$

2 pleces

$$\frac{4X}{4} = -\frac{9}{4}$$

$$\frac{6x}{6} = \frac{-7}{6}$$

Solve the problem.

The number of bacteria growing in an incubation culture increases with time according 14)

to
$$B(x) = 2500(3)^x$$
, where x is time in days.

Should be 4

Find the number of bacteria when x = 0 and x = 4.

A)
$$B(0) = 2500$$
, $B(2) = 202,500$

B)
$$B(0) = 2500$$
, $B(2) \neq 67,500$

C)
$$B(0) = 7500$$
, $B(2) = 202,500$

Multiply.

15)
$$(2\sqrt{2} + 7\sqrt{5})(6\sqrt{2} + 5\sqrt{5})$$

A) $12\sqrt{2} + 35\sqrt{5}$
C) $-151 + 52\sqrt{10}$
 $(2\sqrt{5} + 7\sqrt{5})(6\sqrt{5} + 5\sqrt{5})$
 $(4\sqrt{5} + 7\sqrt{5})(6\sqrt{5} + 5\sqrt{5})$
 $(4\sqrt{5} + 7\sqrt{5})(6\sqrt{5} + 5\sqrt{5})$
 $(4\sqrt{5} + 7\sqrt{5})(6\sqrt{2} + 5\sqrt{5})$
 $(4\sqrt{5} + 7\sqrt{5})(6\sqrt{2} + 5\sqrt{5})$

B)
$$12\sqrt{2} + 35\sqrt{5} + 52\sqrt{10}$$

D) $199 + 52\sqrt{10}$

Find an equation of the line containing the given pair of points. Write your final answer as a linear function in slope-intercept form.

A)
$$f(x) = -2x + 2$$
 B) $f(x) = 2x + 5$

B)
$$f(x) = 2x + 5$$

C)
$$f(x) = -2x + 5$$

D)
$$f(x) = 5x - 2$$

$$M = \frac{1}{2} - \frac{1}{5} = \frac{1}{5} = \frac{6}{3} = -3$$

$$\frac{1}{2} - \frac{5}{5} = \frac{6}{3} = -3$$

$$\frac{1}{2} - \frac{5}{5} = \frac{6}{3} = -3$$

$$\frac{1}{2} - \frac{5}{5} = -3$$

$$\frac{1}{5} - \frac{5}{5} = -3$$

$$\frac{1}{5} - \frac{5}{5} = -3$$

$$\frac{1}{5} - \frac{1}{5} = -3$$

$$y-y= m(x-x) \Rightarrow y-5=-2(x-5)$$

$$f(x) = -\lambda x + 5$$

Find the function value.

17) Find
$$f(-4)$$
 when $f(x) = x^2 - 5x + 2$.

A)
$$f(-4) = 38$$

B)
$$f(-4) = -2$$

B)
$$f(-4) = -2$$
 C) $f(-4) = 34$ D) $f(-4) = 6$

D)
$$f(-4) = 6$$

$$f(-4) = 38$$

$$f(-4) = -2$$

$$f(-4) = (-4)^{2} - 5(-4) + 2$$

$$= 16 + 20 + 2$$

$$= 138$$

Rationalize the denominator. Assume all variables represent positive numbers.

$$\frac{5\sqrt{x}}{\sqrt{x}+2\sqrt{y}}$$
A) $\frac{5x+10\sqrt{xy}}{x+2y}$
B) $\frac{5x+10\sqrt{xy}}{x+4y}$
C) $\frac{5x-10\sqrt{xy}}{x-2y}$
D) $\frac{5x-10\sqrt{xy}}{x-4y}$

$$\frac{5\sqrt{x}-2\sqrt{y}}{x-4y} = \frac{5\sqrt{x}-\sqrt{y}}{x-4y}$$
FOLL

Solve the problem.

19) To make jewelry, Anne wishes to mix a metal alloy that is 22% copper with an alloy that is 25% copper to form 63 ounces of an alloy that is 24% copper. How many ounces of the 22% copper alloy must be used?

22% copper alloy must be used?

A) 21 ounces

B) 42 ounces

C) 47 ounces

D) 23 ounces

$$X = 67 \text{ of } 27\%$$
 $Y = 67 \text{ of } 75\%$
 $X + 15.75 - 75X = 15.17$
 $X + 15.75 - 75X = 15.17$

Multiply or divide as indicated. Simplify completely.

Multiply of divide as indicated. Simplify completely.

20)
$$\frac{x^3 + 1}{x^3 - x^2 + x} \div \frac{-12x - 12}{6x}$$

A) $-\frac{x^2 + 1}{2}$

B) $-\frac{1}{2}$

C) $-\frac{x^3 + 1}{2(x + 1)}$

D) $\frac{x + 1}{2(-x - 1)}$
 $\frac{x^3 + 1}{x^3 - x^2 + x}$
 $\frac{x^3 + 1}{x^3 - x^2 + x}$

Solve the system for z.

21)
$$4x - y + 3z = 12$$

 $2x + 9z = -5$
 $x + 4y + 6z = -32$

A)
$$z = 1$$

$$(B)$$
 $z = -1$

C)
$$z = 2$$

D)
$$z = -2$$

$$\frac{4R1 + R3}{16x - 4y + D7 = 48}$$

$$\frac{X + 4y + 67 = -32}{17X + 182 = 16}$$

$$17x+187 = 16$$

 $(2x + 97 = -5) - 2$

$$\frac{17x + 18x}{13x} = 16$$

$$\frac{1}{13} = 16$$

$$\frac{1}{13} = 16$$

$$2x+97=-5$$

 $2(2)+97=-5$

Solve and graph.

22)
$$|6k + 3| \le 2$$

$$\mathbf{A})\left[-\frac{5}{6},-\frac{1}{6}\right]$$

$$B)\left[-\frac{5}{6}, -\frac{1}{6}\right]$$

$$C)\left[-\infty,-\frac{1}{6}\right]$$

$$D)\left[-\infty, -\frac{5}{6}\right] \cup \left[-\frac{1}{6}, \infty\right]$$

$$-\frac{2}{5} \le \frac{6}{1} + \frac{2}{3} = \frac{2}{3}$$

$$-\frac{5}{5} \le \frac{6}{5} + \frac{2}{5} = \frac{1}{5}$$

$$-\frac{7}{5} \le \frac{6}{5} + \frac{2}{5} = \frac{1}{5}$$

$$-\frac{7}{5} \le \frac{6}{5} + \frac{2}{5} = \frac{1}{5}$$

$$-\frac{7}{5} = \frac{1}{5} = \frac{1}{5} = \frac{1}{5}$$

Find the domain and the range of the relation. Use the vertical line test to determine whether the graph is the graph of a function.

- A) domain: [-8, -2] range: [-1, 5] not a function
- C) domain: [-1, 5] range: [-8, -2] not a function

- B) domain: [-1, 5] range: [-8, -2] function
- D) domain: [-8, -2] range: [-1, 5] function

Solve the inequality and graph the solution set.

24)
$$12x - 8 < 4x \text{ or } -4x \le -12$$

 $A) \emptyset$

B) [1,3]

C) (1,3]

= 8

$$\gamma = 3$$

x=1

Find the x- and y-intercepts. If no x-intercepts exist, state so

25)
$$f(x) = x^2 + 12x$$

- A) No x-intercept; y-intercept (0,0)
- B) x-intercepts (0, -12) and (-12, 0); y-intercept (0,0)
- C) x-intercepts (0, 0) and (-12, 0); y-intercept (0,0)
- D) x-intercepts (0, 0) and (12, 0); y-intercept (0,0)

$$Q = X_8 + 19X$$

$$(0,0), (-17,0)$$

$$0 = \chi^{2} + 12\chi$$

$$0 = \chi(\chi + 12) \qquad (0,0), (-12,0)$$

Simplify.

$$\frac{1}{x} + \frac{4}{x^2}$$

$$x + \frac{64}{x^2}$$

A)
$$\frac{1}{x^2 + 4x + 16}$$
 B) $\frac{x+4}{x^2 + 64}$

B)
$$\frac{x+4}{x^2+64}$$

$$C)\frac{1}{x^2 + 16}$$

D)
$$\frac{1}{x^2 - 4x + 16}$$

$$\frac{x^2 - \frac{1}{x} + \frac{4}{x^2} x^2}{x^2 + \frac{1}{x^2} x^2}$$

$$= > \frac{\times + 9}{\chi^3 + 64}$$

$$\frac{x^{2} \cdot \frac{1}{x} + \frac{4}{x^{2}} \cdot x^{2}}{x^{3} + 64} \Rightarrow \frac{x + 4}{x^{3} + 64} \Rightarrow \frac{x + 4}{x^{2} - 4x + 16} \Rightarrow \frac{1}{x^{2} - 4x + 16}$$

Find the domain of the function h.

27)
$$h(x) = \frac{x-1}{x^2 + 5x - 14}$$

A) $\{x \mid x \text{ is a real number and } x \neq -2 \text{ and } x \neq 0\}$

B) $\{x \mid x \text{ is a real number and } x \neq -7 \text{ and } x \neq 2 \text{ and } x \neq 1\}$

C) $\{x \mid x \text{ is a real number and } x \neq -7 \text{ and } x \neq 2\}$

D) $\{x \mid x \text{ is a real number and } x \neq 0\}$

E) $\{x \mid x \text{ is a real number and } x \neq -2 \text{ and } x \neq 0 \text{ and } x \neq -7 \text{ and } x \neq 0\}$

$$(47)^{2}$$

For the pair of functions f and g, find all values of x for which f(x) = g(x).

28)
$$f(x) = \frac{x-2}{28}$$
, $g(x) = \frac{1}{x+1}$

$$g(x) = \frac{1}{x+1}$$

A)
$$x = 2, -1$$

B)
$$x = 6, -5$$
 C) $x = 27, 2$

C)
$$x = 27, 2$$

D)
$$x = -1, 30$$

$$f(x) = g(x)$$

$$f(x) = g(x)$$

$$\frac{(x-2)}{28} = \frac{1.78(x+1)}{(x+1)}$$

$$\frac{(x-3)(x+1)}{(x-3)(x+1)} = 28$$

$$\frac{(x-3)(x+1)}{(x-6)(x+5)} = 0$$

$$\chi^{2} - \chi - 30 = 0$$

$$\lambda_{3} - \lambda - \lambda = 38$$

Perform the indicated operation and simplify.

29)
$$\frac{a+b}{a-b} - \frac{3ab+3b^2}{a^2-b^2}$$

$$\frac{A)\frac{a-2b}{a-b}}{a-b} = \frac{B)\frac{a^2-2ab-2b^2}{a^2-b^2}}{a^2-b^2} = \frac{C)\frac{a+2b}{a-b}}{a-b} = \frac{D)\frac{a-2b}{a+b}}{a-b}$$

$$\frac{3ab+3b^2}{a-b} = \frac{3b(a+b)}{a-b} = \frac{3b}{a-b} = \frac{3b}{a-b}$$

$$\Rightarrow \frac{a+b-3b}{a-b} \Rightarrow \frac{a-2b}{a-b}$$

Find an equation for the described linear function.

30) Through
$$\left[0, \frac{1}{3}\right]$$
 and parallel to $5x - 8y = 2$

A)
$$y = \frac{5}{8}x + \frac{1}{3}$$
 B) $y = \frac{8}{5}x + \frac{1}{3}$

B)
$$y = \frac{8}{5}x + \frac{1}{3}$$

C)
$$y = -5x + \frac{1}{3}$$
 D) $y = -\frac{5}{8}x + \frac{1}{3}$

$$-5x - 8y = -5y + 2$$
 $-8y = -5y + 2$

$$y-y_1 = m(x-x_1)$$

 $y-\frac{1}{3} = \frac{5}{8}(x-0)$
 $y-\frac{1}{3} = \frac{5}{8}x_{1/3}$