Math 1010 Final Exam Form B, Fall 2009

Name:	
Instructor:	ID verification:

Each problem is equally weighted. Scientific calculators are permitted.

Time limit: Two hours.

Not allowed: notes, books, graphing/programable calculators, cell phones or other hand held devices.

Find the exact solution. If no solution exists, state this.

1)
$$2^{(2x+1)} = 32$$

A) $x = 4$

B)
$$x = 2$$

C)
$$x = 3$$

D)
$$x = 16$$

Simplify. Write the answer using positive exponents only. Leave the answer in exponential notation.

$$2) \left(\frac{2x^{3}y^{-3}}{x^{-3}y^{4}} \right)^{-5}$$

A)
$$\frac{-8x^{30}}{y}$$

B)
$$\frac{y^{35}}{2x^6}$$

C)
$$\frac{y^{35}}{2x^{30}}$$

D)
$$\frac{y^{35}}{32x^{30}}$$

Solve.

- 3) A helicopter goes 270 miles with the wind in the same time it can go 180 miles against the wind. The speed of the wind is 6 miles per hour. Find the speed of the helicopter with no wind.
 - A) 45 mph
- B) 30 mph
- C) 36 mph
- D) 24 mph

Solve for m.

4)
$$3m^2 + 8m + 1 = 0$$

A)
$$m = \frac{-4 \pm \sqrt{13}}{6}$$
 B) $m = \frac{-4 \pm \sqrt{19}}{3}$ C) $m = \frac{-8 \pm \sqrt{13}}{3}$ D) $m = \frac{-4 \pm \sqrt{13}}{3}$

B) m =
$$\frac{-4 \pm \sqrt{19}}{3}$$

C) m =
$$\frac{-8 \pm \sqrt{13}}{3}$$

D) m =
$$\frac{-4 \pm \sqrt{13}}{3}$$

Solve.

5)
$$\sqrt{5q+6} = 6$$

A) $q = \frac{42}{5}$

B)
$$q = 36$$
 C) $q = 6$

C)
$$q = 6$$

D)
$$q = \frac{36}{5}$$

- John owns a hotdog stand. He has found that his profit is represented by the equation $P = -x^2 + 64x + 82$, with P being the profit in dollars, and x the number of hotdogs sold. How many hotdogs must he sell to earn the most profit?
 - A) 25 hotdogs
- B) 32 hotdogs
- C) 33 hotdogs
- D) 50 hotdogs

Find the exact solution. If no solution exists, state this.

7)
$$\log_2(3x - 3) = 1$$

A)
$$x = 2$$

$$B) x = \frac{5}{3}$$

B)
$$x = \frac{5}{3}$$
 C) $x = \frac{5}{4}$

D) No solution

Graph the system of linear inequalities.

8) $2x + y \le 4$ and y - 1 < 0

A)

B)

D)

Perform the indicated operation and simplify. Write the answer in the form a + bi.

- 3i(6 **-** 2i) 9)
 - A) 18i 6i²
- B) $18i + 6i^2$
- C) 6 + 18i
- D) 6 + 18i

Find the center and the radius of the circle.

10)
$$x^2 + y^2 + 6x - 40 = 0$$

A)
$$(-3, 0)$$
, $r = 7$

B)
$$(-3, 0)$$
, $r = 49$ C) $(3, 0)$, $r = 7$ D) $(3, 0)$, $r = 49$

C)
$$(3, 0)$$
, $r = 7$

D)
$$(3, 0)$$
, $r = 49$

Find the distance between the pair of points. Give your answer in exact form.

A)
$$2\sqrt{13}$$

B)
$$20\sqrt{5}$$

Solve the equation.

12)
$$x^3 + 10 = 10x^2 + x$$

13)
$$|5x + 8| = |x - 1|$$

A)
$$\left\{-\frac{9}{4}, -\frac{7}{6}\right\}$$

$$C) \left\{ \frac{9}{4}, \frac{7}{6} \right\}$$

D)
$$\left\{-\frac{9}{4}\right\}$$

Solve the problem.

The number of bacteria growing in an incubation culture increases with time according 14) to $B(x) = 2500(3)^{x}$, where x is time in days.

Find the number of bacteria when x = 0 and x = 4.

A)
$$B(0) = 2500$$
, $B(2) = 202,500$

B)
$$B(0) = 2500$$
, $B(2) = 67,500$

C)
$$B(0) = 7500$$
, $B(2) = 202,500$

D)
$$B(0) = 2500$$
, $B(2) = 30,000$

Multiply.

15)
$$(2\sqrt{2} + 7\sqrt{5})(6\sqrt{2} + 5\sqrt{5})$$

A) $12\sqrt{2} + 35\sqrt{5}$

C)
$$-151 + 52\sqrt{10}$$

B)
$$12\sqrt{2} + 35\sqrt{5} + 52\sqrt{10}$$

D) 199 +
$$52\sqrt{10}$$

Find an equation of the line containing the given pair of points. Write your final answer as a linear function in slope-intercept form.

A)
$$f(x) = -2x + 2$$

$$B) f(x) = 2x + 5$$

C)
$$f(x) = -2x + 5$$

B)
$$f(x) = 2x + 5$$
 C) $f(x) = -2x + 5$ D) $f(x) = 5x - 2$

Find the function value.

17) Find
$$f(-4)$$
 when $f(x) = x^2 - 5x + 2$.

A)
$$f(-4) = 38$$

B)
$$f(-4) = -2$$

B)
$$f(-4) = -2$$
 C) $f(-4) = 34$

D)
$$f(-4) = 6$$

Rationalize the denominator. Assume all variables represent positive numbers.

$$18) \quad \frac{5\sqrt{x}}{\sqrt{x} + 2\sqrt{y}}$$

A)
$$\frac{5x + 10\sqrt{xy}}{x + 2y}$$

$$B) \frac{5x + 10\sqrt{xy}}{x + 4y}$$

C)
$$\frac{5x - 10\sqrt{xy}}{x - 2y}$$

A)
$$\frac{5x + 10\sqrt{xy}}{x + 2y}$$
 B) $\frac{5x + 10\sqrt{xy}}{x + 4y}$ C) $\frac{5x - 10\sqrt{xy}}{x - 2y}$ D) $\frac{5x - 10\sqrt{xy}}{x - 4y}$

Solve the problem.

- 19) To make jewelry, Anne wishes to mix a metal alloy that is 22% copper with an alloy that is 25% copper to form 63 ounces of an alloy that is 24% copper. How many ounces of the 22% copper alloy must be used?
 - A) 21 ounces
- B) 42 ounces
- C) 47 ounces
- D) 23 ounces

Multiply or divide as indicated. Simplify completely. 20) $\frac{x^3 + 1}{x^3 - x^2 + x} \div \frac{-12x - 12}{6x}$

20)
$$\frac{x^3 + 1}{x^3 - x^2 + x} \div \frac{-12x - 12}{6x}$$

A)
$$-\frac{x^2+1}{2}$$
 B) $-\frac{1}{2}$

B)
$$-\frac{1}{2}$$

C)
$$-\frac{x^3+1}{2(x+1)}$$
 D) $\frac{x+1}{2(-x-1)}$

D)
$$\frac{x+1}{2(-x-1)}$$

Solve the system for z.

21)
$$4x - y + 3z = 12$$

$$2x + 9z = -5$$

$$x + 4y + 6z = -32$$

A)
$$z = 1$$

B)
$$z = -1$$

C)
$$z = 2$$

D)
$$z = -2$$

Solve and graph.

22)
$$|6k + 3| \le 2$$

A)
$$\left[-\frac{5}{6}, -\frac{1}{6}\right]$$

$$B)\left[-\frac{5}{6'}-\frac{1}{6}\right]$$

$$C)\left[-\infty,-\frac{1}{6}\right]$$

$$D)\left[-\infty,-\frac{5}{6}\right]\cup\left[-\frac{1}{6},\infty\right]$$

Find the domain and the range of the relation. Use the vertical line test to determine whether the graph is the graph of a function.

23)

- A) domain: [-8, -2] range: [-1, 5] not a function
- C) domain: [-1, 5] range: [-8, -2] not a function

- B) domain: [-1, 5] range: [-8, -2] function
- D) domain: [-8, -2] range: [-1, 5] function

Solve the inequality and graph the solution set.

24) $12x - 8 < 4x \text{ or } -4x \le -12$

A) Ø

C) (1,3]

B) [1,3]

D) $(-\infty,1) \cup [3,\infty)$

Find the x- and y-intercepts. If no x-intercepts exist, state so.

- 25) $f(x) = x^2 + 12x$
 - A) No x-intercept; y-intercept (0,0)
 - B) x-intercepts (0, -12) and (-12, 0); y-intercept (0,0)
 - C) x-intercepts (0, 0) and (-12, 0); y-intercept (0,0)
 - D) x-intercepts (0, 0) and (12, 0); y-intercept (0,0)

Simplify.

$$\frac{\frac{1}{x} + \frac{4}{x^2}}{x + \frac{64}{x^2}}$$

A)
$$\frac{1}{x^2 + 4x + 16}$$
 B) $\frac{x+4}{x^2 + 64}$

B)
$$\frac{x+4}{x^2+64}$$

C)
$$\frac{1}{x^2 + 16}$$

D)
$$\frac{1}{x^2 - 4x + 16}$$

Find the domain of the function h.

27)
$$h(x) = \frac{x-1}{x^2 + 5x - 14}$$

- A) $\{x \mid x \text{ is a real number and } x \neq -2 \text{ and } x \neq 0\}$
- B) $\{x \mid x \text{ is a real number and } x \neq -7 \text{ and } x \neq 2 \text{ and } x \neq 1\}$
- C) $\{x \mid x \text{ is a real number and } x \neq -7 \text{ and } x \neq 2\}$
- D) $\{x \mid x \text{ is a real number and } x \neq 0\}$
- E) $\{x \mid x \text{ is a real number and } x \neq -2 \text{ and } x \neq 0 \text{ and } x \neq -7 \text{ and } x \neq 0\}$

For the pair of functions f and g, find all values of x for which f(x) = g(x).

28)
$$f(x) = \frac{x-2}{28}$$
, $g(x) = \frac{1}{x+1}$

$$g(x) = \frac{1}{x+1}$$

A)
$$x = 2, -1$$

B)
$$x = 6, -5$$

C)
$$x = 27, 2$$

B)
$$x = 6, -5$$
 C) $x = 27, 2$ D) $x = -1, 30$

Perform the indicated operation and simplify.

29)
$$\frac{a+b}{a-b} - \frac{3ab+3b^2}{a^2-b^2}$$

A)
$$\frac{a-2b}{a-b}$$

A)
$$\frac{a-2b}{a-b}$$
 B) $\frac{a^2-2ab-2b^2}{a^2-b^2}$ C) $\frac{a+2b}{a-b}$

C)
$$\frac{a+2b}{a-b}$$

D)
$$\frac{a-2b}{a+b}$$

Find an equation for the described linear function.

30) Through
$$\left[0, \frac{1}{3}\right]$$
 and parallel to $5x - 8y = 2$
A) $y = \frac{5}{8}x + \frac{1}{3}$ B) $y = \frac{8}{5}x + \frac{1}{3}$ C) $y = -5x + \frac{1}{3}$ D) $y = -\frac{5}{8}x + \frac{1}{3}$

A)
$$y = \frac{5}{8}x + \frac{1}{3}$$

B)
$$y = \frac{8}{5}x + \frac{1}{3}$$

C)
$$y = -5x + \frac{1}{3}$$

D)
$$y = -\frac{5}{8}x + \frac{1}{3}$$

Answer Key

Testname: M1010F09FB

- 1) B
- 2) D
- 3) B
- 4) D
- 5) C
- 6) B
- 7) B
- 8) A
- 9) D
- 10) A
- 11) A
- 12) D
- 13) A
- 14) A
- 15) D
- 16) C
- 17) A
- 18) D
- 19) A
- 20) B
- 21) B
- 22) A
- 23) A
- 24) D
- 25) C
- 26) D
- 27) C
- 28) B
- 29) A
- 30) A