	Salt Lake Communit MATH 1050 Final Exa	ty College am Form B
1	Fall Semester	2008
Name: KEY	Instru	ıctor:
Student ID:	ID Verification:	Section Number:
This exam has three pa	rts: Part I Ten Multiple choice of Part II Ten open ended que Part III Choose five out of to your work and indicate which	questions estions - You must show all your work. en open ended questions - You must show five problems are to be graded.
You are NOT allowed t	o use books or notes .	
		·····

Part I Questions 1 - 10 Multiple Choice Answer all TEN questions and circle the most correct answer.

1) Determine whether the infinite geometric series converges or diverges. If it converges, find its sum.

$$4 - \frac{4}{3} + \frac{4}{9} - \frac{4}{27} + \dots$$

A) Converges; 3

C) Converges; $-\frac{4}{3}$

B) Converges; $\frac{8}{3}$

D) Diverges

2) Find the amount that results from \$12,000 invested at 7% compounded quarterly after a period of 3 years.

3) Write the equation that results if the square root function is shifted 7 units to the right A) $y = \sqrt{x} + 7$ B) $y = \sqrt{x} - 7$ C) $y = \sqrt{x + 7}$ D) $y = \sqrt{x - 7}$

1.
$$4 - \frac{4}{3} + \frac{4}{9} - \frac{4}{27} + \cdots$$
 is an infinite sum, so $S_{\infty} = \frac{a_{1}}{1 - r}$
we need $r: -\frac{4}{3} \div 4 = -\frac{1}{3}$, $\frac{4}{9} \div -\frac{4}{3} = -\frac{1}{3}$ so $r = -\frac{1}{3}$
 $t S_{\infty} = \frac{4}{1 - \frac{1}{3}} = \frac{4}{1 + \frac{1}{3}} = \frac{4}{\frac{1}{3}} = 4 \cdot \frac{3}{4} = \boxed{3}$
2. $A = P(1 + \frac{r}{n})^{(nt)} = P = D 000, r = 0.07, n = 4, t = 3$
(quanterly)
So $A = D 000(1 + \frac{07}{4})^{(4 \cdot 3)} = \boxed{14777.27}$

4) A projectile is thrown upward so that its distance above the ground after t seconds is $h = -11t^2 + 462t$. After how many seconds does it reach its maximum height?

A) 31.5 sec B) 21.0 sec C) 10.0 sec D) 42.0 sec

5) Form a polynomial whose zeros and degree are given. Zeros: 2, multiplicity 2; -2, multiplicity 2; degree 4 A) $f(x) = x^4 - 4x^3 + 8x^2 - 8x + 16$ C) $f(x) = x^4 + 8x^2 + 16$ B) $f(x) = x^4 - 8x^2 + 16$ D) $f(x) = x^4 + 4x^3 - 8x^2 + 8x - 16$

6) Give the equation of the oblique asymptote of $g(x) = \frac{x^2 + 7x - 2}{x - 2}$

(A)
$$y = x + 9$$
 (B) $y = x - 2$ (C) $y = 1$ (D) $y = x - 9$

7) Perform the indicated operations and simplify.

Let
$$A = \begin{bmatrix} 0 & -1 \\ 2 & 0 \\ 6 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} -2 & 0 \\ 1 & 1 \\ 6 & 2 \end{bmatrix}$, and $C = \begin{bmatrix} -6 & 1 & 2 \\ 0 & -6 & -1 \end{bmatrix}$. Find $C(A - B)$.
A) $\begin{bmatrix} 14 & 6 \\ 6 & -6 \end{bmatrix}$
B) $\begin{bmatrix} 6 & -6 \\ 14 & 6 \end{bmatrix}$
C) $\begin{bmatrix} -11 & 5 \\ -6 & 6 \end{bmatrix}$
D) $\begin{bmatrix} -22 & 6 \\ 7 & 4 \end{bmatrix}$

8) Evaluate $(f \circ g)(4)$ using the values given in the table.

9) Find the vertex and axis of symmetry of the graph of $f(x) = -7x^2 - 14x - 3$.

A) (2, -59) ; x = 2	B) (-2, -17) ; x = -2
$(-1, 4); x = -1)^{-1}$	D) (-1,-3) ; x = -1

4.
$$h = -11t^{2} + 462t$$
, max@vertex.
 $t = -\frac{b}{2a} = \frac{-462}{-27} = 21 \text{ scconds}$ (height, I would plug t= 21
into the h= function /
5. $x = 2$, multiplicity $2 \Rightarrow (x-3)^{2} \Rightarrow 7 = 7 = (x+3)^{2} (x-3)^{2}$ Fuiz
 $x = -2$, mult $2 \Rightarrow (x+3)^{2} \Rightarrow 7 = 7 = (x+3)^{2} (x-3)^{2}$ Fuiz
 $\Rightarrow Y = (x^{2} + 4x + 4)(x^{2} - 4x + 4) = 0 \text{ istRibute}$
 $y = x^{4} - 8x^{2} + 16$

6. OBLIQUE Asymptot (? => LONG DIVISION

$$=7 \times -3 \frac{x+q}{|x^{2}+7|^{2}-3} = 7 \frac{y=x+q}{|y=x+q|}$$

$$=7 \times -3 \frac{x+q}{|x^{2}+7|^{2}-3} = 7 \frac{y=x+q}{|y=x+q|}$$

$$=7 \times -3 \frac{-4}{|x^{2}+7|^{2}-3} = -3 \frac{-4}{|x^{2}-1|^{2}-3|^{2}-$$

10) Find the domain of
$$f(x) = \sqrt{10 - x}$$

A) $\{x | x \neq \sqrt{10}\}$ B) $\{x | x \neq 10\}$ C) $\{x | x \leq \sqrt{10}\}$ D) $\{x | x \leq 10\}$
 $|0 - \chi = 0 \Rightarrow |0 = \chi = 7 \quad \chi \leq |0 = 7 \quad \chi \leq \chi \mid \chi \leq 10$

Part II Question 11 - 20 Open Ended

Answer all TEN questions. To receive full credit, you must show all your work . It must be neat and well organized. Clearly indicate your final answer.

11) Solve the system using the inverse matrix method.

$$\begin{cases} x + 2y + 3z = -7 \\ x + y + z = 10 \\ 2x + 2y + z = 11 \end{cases} \qquad Ax = b \Rightarrow \chi = A^{-1} \cdot b$$
The inverse of $\begin{bmatrix} 12.3 \\ 11.1 \\ 22.1 \end{bmatrix}$ is $\begin{bmatrix} -1 & 4 - 1 \\ 1 - 5 & 2 \\ 0 & 2 - 1 \end{bmatrix}$. So $\chi = \begin{bmatrix} -1 & 4 & -1 \\ 1 & -5 & 2 \\ 0 & 2 & -1 \end{bmatrix} \cdot \begin{bmatrix} -7 \\ 70 \\ 11 \end{bmatrix}$
 $= \begin{bmatrix} (-1/(-7) + 4/(10) + (-1/(11)) \\ 1(-7) + (-5)/(0) + (-1)/(11) \\ 0(-7) + 3/(10) + (-1)/(11) \end{bmatrix} = \begin{bmatrix} 36 \\ -35 \\ 9 \end{bmatrix}$

12) Solve
$$\log_3 x + \log_3(x - 24) = 4$$
.
=> $\log_3 X(x - 74) = 4 = 7 X(x - 74) = 3^4 = 7 X^2 - 74X = 8(3)$
=> $\chi^2 - 74X - 8(1 = 0) = 7 (x - 77)(x + 3) = 0 = 7 x = -3, 77$
But $x = -3$ leads to $\log_3(-3)$ which is undefined, so
 $X = -77$

13) Write the partial fraction decomposition of
$$\frac{10x+2}{(x-1)(x^2+x+1)}$$
, $= \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$
 $\Rightarrow 10x+3 = A(x^2+x+1) + (x-1YBx+C) \Rightarrow (0x^2+3 = Ax^2+Ax+A+Bx^2-Bx+C) = C$
 $\Rightarrow 10x+3 = (A+B)x^2 + (A-B+C)x + (A-C)$
 $\Rightarrow A+B = 0$
 $A-B+C = i0 \Rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 \\ 1 & 0 & -1 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 4 \\ 0 & 1 & 0 & 0 & -4 \\ 0 & 0 & 1 & -4 & -2 \end{bmatrix} \Rightarrow A = 4$
 $\Rightarrow C = 3$
 $\Rightarrow x^2 + 5$. State the domain and range of f and f¹.
 $(1+x) = \frac{3x-2}{x+5}$. State the domain and range of f and f¹.
 $(1+x) = \frac{-5x-3}{x+5}$
 $\Rightarrow x^2 + 5x = 3y - 3 \Rightarrow x^2 -$

15) For the polynomial, $f(x) = \frac{1}{5}x^2(x^2 - 3)(x - 3)$, list each real zero and its multiplicity.

Determine whether the graph crosses or touches the x-axis at each x -intercept.

Zero	Multiplicity	louch or Cross
0	2	T
5	I	C
-15	l	C
3	l	C

X=-53

18) Find the inverse of the matrix by hand. **Do not** use your calculator. Show your work. [5 3]

19) Use the given zero to find the remaining zeros of the function.

_

$$f(x) = x^{3} - 2x^{2} - 11x + 52; \text{ zero: } -4$$

$$= 1 - 2 - 11 - 52$$

$$= 1 - 6 - 13 - 3 = 10$$

$$\chi^{2} - 6\chi + 13 = 0$$

$$\chi = 6 \pm 136 - 52$$

$$\Rightarrow \chi = 6 \pm 146 = 7\chi = 3 \pm 40$$

$$= 3\chi = 3 \pm 20$$

20) Find the **domain** of the rational function. Draw the **graph**. **Label** all the intercepts and asymptotes.

$$R(x) = \frac{-3x^{2}}{x^{2} + 4x - 45}$$

$$R(x) = \frac{-3x^{2}}{x^{2} + 4x - 45}$$

$$X^{2} + 4x - 45 = 0 \implies (x + 9)(x - 5) = 0$$

$$= \sqrt{x - 9}, 5 \text{ are Vertical}$$

$$= \sqrt{x - 9}, 5 \text{ are Vertical}$$

$$A = \sqrt{y - 3} \quad \text{for contal}: \quad -3x^{2} = [-3 = Y]$$

$$X^{2} - 9 \quad x^{2} -$$

Part III Questions 21 - 30 Self Select

Choose FIVE of the next TEN question to complete. To receive full credit, you must show all your work . It must be neat and well organized. Clearly indicate your final answer. CROSS OUT the problems that you do not wish to be graded.

· · · · · · · · · · · · · · · · · · ·
Decreasing $(-3, -3) \cup (2, 4)$
Constant $(-2,-1) \cup (1,2)$
Find $f(2)$. Find x when $f(x) = -2$.
$\int f(4) = -2$
$(-2\pi)^{2}$ $(1,3)$
(-3,1) (onstart) $(1,1)$ (2,1)
(-1,-1) (-1,-1) (-1,-1) (-1,-1) (-1,-1)
Decreasing Decreasing
(-1-2) (2.4)
22) Express as a single logarithm.
$4 \log_{6} 4 + \frac{1}{4} \log_{6} (x - 3) - \frac{1}{2} \log_{6} x \implies \log_{6} 4 + \log_{6} (x - 3) = -109 \chi$
4 1/4
$= \frac{4(x-3)}{x}$
$\left[\begin{array}{c} 1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

23) The half-life of silicon-32 is 710 years. If 70 grams is present now, how much will be present in 400 years? (Round your answer to three decimal places.)

$$Q = Q_{0}e^{kt} = 7 \quad if Q_{0} = 70, \text{ after a half/ife would be}
Q = 35,
50 \quad 35 = 70e^{k(70)} \Rightarrow \frac{35}{70} = e^{10k} \Rightarrow \ln(\frac{35}{70}) = 70k = 3
= 7 \quad k = \frac{1}{70} \ln(\frac{35}{70}) = -0.00976264 \text{ (stored in cale)}
400Y(5) \quad Q = 70e^{K(100)} \Rightarrow Q = 47.370g \text{ rams} \text{ (vying stored k)}$$

24) Find an **equation** for the hyperbola with vertices at (0, ±6) and one of its asymptotes the line $y = \frac{3}{2}x$. Draw the **graph**.

$$\frac{4}{50} \text{ Hyperbola opens UP/rbun,} \\ \frac{50}{50} \text{ Hrm First, and } a=6$$

$$\frac{y^2}{36} - \frac{\chi^2}{b^2} = 1$$
we also for $\frac{6}{5} = \frac{3}{2}$ from a symptoke
$$\frac{50}{5} = \frac{6}{5} = \frac{4}{5} = \frac{16}{5}$$

$$\frac{y^2}{36} - \frac{\chi^2}{16} = 1$$

Ł

27) Find the sum.
$$\sum_{n=1}^{50} (4n+2) = 6 + 10 + 14 + \dots + 202$$

Aritumetic with $d = 4, n = 50, q_{2} = 6$

$$S_{n} = \frac{h}{2}(q_{1}+q_{n}) = \frac{50}{2}(6+202)$$

$$= \sqrt{5}200$$

29) Solve $x^3 - 5x^2 + 5x = 1$. Give exact values.

30) Solve the exponential equation. (Round your answer to three decimal places.)

$$4^{(1+2x)} = 17$$

$$(1+3x) = |n|7$$

$$(1+3x) |n| = (n|7)$$

$$(1+3x) |n| = (n|7)$$

$$(1+3x) |n| = (n|7)$$

$$(1+3x) = \frac{|n|7}{|n|^4}$$

$$(1+3x) = \frac{|n|7}{|n$$