Name: \qquad Instructor: \qquad
Student ID: \qquad ID Verification: \qquad Section Number: \qquad

This exam has three parts: Part I -- Ten Multiple choice questions
Part II -- Ten open ended questions - You must show all your work.
Part III -- Choose five out of ten open ended questions - You must show
your work and indicate which five problems are to be graded.
You are NOT allowed to use books or notes.

Part I
 Questions 1-10 Multiple Choice

Answer all TEN questions and circle the most correct answer.

1) Determine whether the infinite geometric series converges or diverges. If it converges, find its sum.
$4-\frac{4}{3}+\frac{4}{9}-\frac{4}{27}+\ldots$
A) Converges; 3
B) Converges; $\frac{8}{3}$
C) Converges; $-\frac{4}{3}$
D) Diverges
2) Find the amount that results from $\$ 12,000$ invested at 7% compounded quarterly after a period of 3 years.
A) $\$ 14,523.12$
B) $\$ 14,777.27$
C) $\$ 14,700.52$
D) $\$ 2777.27$
3) Write the equation that results if the square root function is shifted 7 units to the right.
A) $y=\sqrt{x}+7$
B) $y=\sqrt{x}-7$
C) $y=\sqrt{x+7}$
D) $y=\sqrt{x-7}$
4) A projectile is thrown upward so that its distance above the ground after t seconds is $h=-11 t^{2}+462 t$. After how many seconds does it reach its maximum height?
A) 31.5 sec
B) 21.0 sec
C) 10.0 sec
D) 42.0 sec
5) Form a polynomial whose zeros and degree are given. Zeros: 2 , multiplicity 2; -2 , multiplicity 2 ; degree 4
A) $f(x)=x^{4}-4 x^{3}+8 x^{2}-8 x+16$
B) $f(x)=x^{4}-8 x^{2}+16$
C) $f(x)=x^{4}+8 x^{2}+16$
D) $f(x)=x^{4}+4 x^{3}-8 x^{2}+8 x-16$
6) Give the equation of the oblique asymptote of $g(x)=\frac{x^{2}+7 x-2}{x-2}$
A) $y=x+9$
B) $y=x-2$
C) $y=1$
D) $y=x-9$
7) Perform the indicated operations and simplify.

Let $A=\left[\begin{array}{rr}0 & -1 \\ 2 & 0 \\ 6 & 2\end{array}\right], B=\left[\begin{array}{rr}-2 & 0 \\ 1 & 1 \\ 6 & 2\end{array}\right]$, and $C=\left[\begin{array}{rrr}-6 & 1 & 2 \\ 0 & -6 & -1\end{array}\right]$. Find $C(A-B)$.
A) $\left[\begin{array}{rr}14 & 6 \\ 6 & -6\end{array}\right]$
B) $\left[\begin{array}{rr}6 & -6 \\ 14 & 6\end{array}\right]$
C) $\left[\begin{array}{rr}-11 & 5 \\ -6 & 6\end{array}\right]$
D) $\left[\begin{array}{rr}-22 & 6 \\ 7 & 4\end{array}\right]$
8) Evaluate $(f \circ g)(4)$ using the values given in the table.

$$
\begin{array}{c|c|c|c|c}
x & 1 & 5 & 8 & 12 \\
\hline f(x) & -2 & 8 & 2 & 13 \\
x & -5 & -2 & 1 & 4 \\
\hline \mathrm{~g}(\mathrm{x}) & 1 & -5 & 5 & 8
\end{array}
$$

A) 8
B) 2
C) 5
D) Undefined
9) Find the vertex and axis of symmetry of the graph of $f(x)=-7 x^{2}-14 x-3$.
A) $(2,-59) ; x=2$
B) $(-2,-17) ; x=-2$
C) $(-1,4) ; x=-1$
D) $(-1,-3) ; x=-1$
10) Find the domain of $f(x)=\sqrt{10-x}$
A) $\{x \mid x \neq \sqrt{10}\}$
B) $\{x \mid x \neq 10\}$
C) $\{x \mid x \leq \sqrt{10}\}$
D) $\{x \mid x \leq 10\}$

Part II
 Question 11-20 Open Ended

Answer all TEN questions. To receive full credit, you must show all your work. It must be neat and well organized. Clearly indicate your final answer.
11) Solve the system using the inverse matrix method.
$\left\{\begin{array}{r}x+2 y+3 z=-7 \\ x+y+z=10 \\ 2 x+2 y+z=11\end{array}\right.$
The inverse of $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 1 \\ 2 & 2 & 1\end{array}\right]$ is $\left[\begin{array}{ccc}-1 & 4 & -1 \\ 1 & -5 & 2 \\ 0 & 2 & -1\end{array}\right]$.
12) Solve $\log _{3} x+\log _{3}(x-24)=4$.
13) Write the partial fraction decomposition of $\frac{10 x+2}{(x-1)\left(x^{2}+x+1\right)}$.
14) Find the inverse function of $f(x)=\frac{3 x-2}{x+5}$. State the domain and range of f and $f-1$. Domain of f :

Range of f :
$f^{-1}(x)=$

Domain of f^{-1} :
Range of f^{-1} :
15) For the polynomial, $f(x)=\frac{1}{5} x^{2}\left(x^{2}-3\right)(x-3)$, list each real zero and its multiplicity.

Determine whether the graph crosses or touches the x -axis at each x -intercept.

Zero	Multiplicity	Touch or Cross

16) Graph the function. Label at least three points on the graph of f.
$f(x)= \begin{cases}-x+3 & \text { if } x<2 \\ 2 x-3 & \text { if } x \geq 2\end{cases}$

17) Find the center, foci, and vertices of the ellipse. Draw the graph. $\frac{(x+2)^{2}}{16}+\frac{(y-2)^{2}}{9}=1$ Center: \qquad
Foci: \qquad Vertices: \qquad

18) Find the inverse of the matrix by hand. Do not use your calculator. Show your work. $\left[\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right]$
19) Use the given zero to find the remaining zeros of the function. $f(x)=x^{3}-2 x^{2}-11 x+52 ;$ zero: -4
20) Find the domain of the rational function. Draw the graph. Label all the intercepts and asymptotes.
$R(x)=\frac{-3 x^{2}}{x^{2}+4 x-45}$
Domain: \qquad

Part III

Questions 21-30 Self Select

Choose FIVE of the next TEN question to complete. To receive full credit, you must show all your work. It must be neat and well organized. Clearly indicate your final answer. CROSS OUT the problems that you do not wish to be graded.
21) Use the graph of f to do the following:

Find the intervals on which it is increasing, decreasing, or constant.
Increasing \qquad
Decreasing \qquad
Constant \qquad

Find $f(2)$.

22) Express as a single logarithm.
$4 \log _{6} 4+\frac{1}{4} \log _{6}(x-3)-\frac{1}{2} \log _{6} x$
23) The half-life of silicon- 32 is 710 years. If 70 grams is present now, how much will be present in 400 years? (Round your answer to three decimal places.)
24) Find an equation for the hyperbola with vertices at $(0, \pm 6)$ and one of its asymptotes the line $y=\frac{3}{2} x$. Draw the graph.

25) Solve $\frac{(x-4)^{2}}{x^{2}-36}>0$. Express the solution using interval notation.
26) A reflecting telescope contains a mirror shaped like a paraboloid of revolution. If the mirror is 16 inches across at its opening and is 16 inches deep, where will the light be concentrated?
27) Find the sum. $\sum_{n=1}^{50}(4 n+2)$
28) Find the domain of the composite function $f \circ g$ given $f(x)=\sqrt{x-2}$ and $g(x)=\frac{2}{x-10}$.
29) Solve $x^{3}-5 x^{2}+5 x=1$. Give exact values.
30) Solve the exponential equation. (Round your answer to three decimal places.) $4^{(1+2 x)}=17$

