Math 1010 Final Exam Form A, Fall 2008

Name:	
Instructor:	ID verification:

Each problem is equally weighted. Scientific calculators are permitted.

Time limit: Two hours.

Not allowed: notes, books, graphing/programable calculators, cell phones.

Find the domain and the range of the relation. Use the vertical line test to determine whether the graph is the graph of a function.

1)

A) domain: [-4, ∞)

range: $(-\infty, \infty)$

not a function

C) domain: $(-\infty, \infty)$ range: $[-4, \infty)$

not a function

B) domain: [-4, ∞)

range: $(-\infty, \infty)$

function

D) domain: $(-\infty, \infty)$

range: [-4, ∞)

function

Solve the problem.

- 2) The length of a rectangular vegetable garden is 9 feet longer than its width. If the area of the garden is 70 square feet, find its dimensions.
 - A) 4 ft by 13 ft
- B) 7 ft by 10 ft
- C) 5 ft by 14 ft
- D) 6 ft by 15 ft

Solve the equation.

3)
$$2^{(7+3x)} = \frac{1}{4}$$

A)
$$\frac{1}{2}$$

Find the vertex of the graph of the quadratic function.

4)
$$f(x) = -x^2 + 6x - 3$$

C)
$$(6, -3)$$

Solve the problem.

A chemist needs 130 milliliters of a 31% solution but has only 17% and 43% solutions 5) available. Find how many milliliters of each that should be mixed to get the desired solution.

A) 68 ml of 17%; 62 ml of 43%

B) 65 ml of 17%; 65 ml of 43%

C) 60 ml of 17%; 70 ml of 43%

D) 70 ml of 17%; 60 ml of 43%

Solve the equation.

6)
$$\frac{7}{x+3} - \frac{5}{x-3} = \frac{8}{x^2 - 9}$$

Find the midpoint of the line segment whose endpoints are given.

A)
$$(-5, \frac{1}{2})$$

C)
$$(1, -\frac{15}{2})$$

Write as an exponential equation.

8)
$$\log_e z = 7$$

A)
$$7^{e} = z$$

B)
$$e^{z} = 7$$

C)
$$z^7 = e^{-1}$$

D)
$$e^{7} = z$$

Solve the system for z only.

$$\begin{cases} x + y + z = -7 \\ x - y + 2z = 3 \\ 5x + y + z = -27 \end{cases}$$
A) -5 B)

Solve the equation using the quadratic formula.

10)
$$8x^2 + 1 = 3x$$

A)
$$\left\{-\frac{3}{16} - \frac{\sqrt{23}}{16}i, -\frac{3}{16} + \frac{\sqrt{23}}{16}i\right\}$$

C)
$$\left\{ \frac{3}{16} - \frac{\sqrt{23}}{16}i, -\frac{3}{16} + \frac{\sqrt{23}}{16}i \right\}$$

B)
$$\left\{-\frac{3}{16} - \frac{\sqrt{23}}{16}i, \frac{3}{16} + \frac{\sqrt{23}}{16}i\right\}$$

D)
$$\left\{ \frac{3}{16} - \frac{\sqrt{23}}{16}i, \frac{3}{16} + \frac{\sqrt{23}}{16}i \right\}$$

Graph the union or intersection, as indicated.

The intersection of $x + y \le -2$ and $x - y \ge -5$ 11)

A)

C)

B)

D)

Divide.

12)
$$(-8x^3 + 14x^2 - 15x + 3) \div (-4x + 1)$$

A)
$$2x^2 - 3x + 3$$
 B) $x^2 - 3x + 3$

B)
$$x^2 - 3x + 3$$

C)
$$2x^2 + 3$$

D)
$$x^2 + 3x - 3$$

Solve the problem.

The number of mosquitoes M(x), in millions, in a certain area depends on the June rainfall x, in inches: $M(x) = 16x - x^2$. What rainfall produces the maximum number of mosquitoes?

A) 0 in.

B) 8 in.

C) 16 in.

D) 64 in.

Solve the equation.

14)
$$\sqrt{2x-3} = 3-x$$

B) 2

C) 6

D) Ø

Solve the problem.

Scott set up a volleyball net in his backyard. One of the poles, which forms a right 15) angle with the ground, is 6 feet high. To secure the pole, he attached a rope from the top of the pole to a stake 10 feet from the bottom of the pole. To the nearest tenth of a foot, find the length of the rope.

A) 11.7 ft.

B) 4.0 ft.

C) 8.0 ft.

D) 17.1 ft.

Multiply or divide as indicated. Simplify completely.
16)
$$\frac{x^2 + 11x + 24}{x^2 + 14x + 48} \cdot \frac{x^2 + 6x}{x^2 - 2x - 15}$$

A) $\frac{x}{x-5}$ B) $\frac{x^2 + 6x}{x-5}$

C) $\frac{x}{x^2 + 14x + 48}$ D) $\frac{1}{x - 5}$

Write the expression in the standard form a + bi.

17)
$$(4 + 4i)(3 + 5i)$$

A)
$$20i^2 + 32i + 12$$

$$C) -8 + 32i$$

Solve the problem.

- One pump can drain a pool in 7 minutes. When a second pump is also used, the pool only takes 5 minutes to drain. How long would it take the second pump to drain the pool if it were the only pump in use? Round your answer to the nearest tenth.
 - A) 24.1 minute
- B) 17.5 minutes
- C) 33.0 minutes
- D) 2.9 minutes

Factor the polynomial completely.

19)
$$8y^3z - z$$

A)
$$z(2y - 1)(4y^2 + 1)$$

C)
$$z(2y - 1)(4y^2 + 2y + 1)$$

B)
$$z(2y + 1)(4y^2 - 2y + 1)$$

D)
$$z(8y - 1)(y^2 + 2y + 1)$$

Simplify the expression. Express the answer using only positive exponents. Assume that all variables are positive.

$$20) \qquad \frac{(-2x^{4/3})^3}{x^{-4/3}}$$

A)
$$-2x^{16/3}$$

B)
$$-8x^{8/3}$$

C)
$$-2x^{8/3}$$

Solve the inequality. Graph the solution set.

21)
$$|x + 3| - 1 \ge 3$$

A)
$$(-\infty, -7] \cup [1, \infty)$$

B) [-7, 1]

C) [1, ∞)

D) (-7, 1)

Simplify the expression. Assume that all variables are positive.

22)
$$\sqrt{2x^2} + 5\sqrt{18x^2} + 2\sqrt{8x^2}$$

A)
$$7x\sqrt{28}$$

B)
$$20x\sqrt{2}$$

C)
$$28x\sqrt{2}$$

D)
$$8x\sqrt{2}$$

List the intercepts for the graph of the equation.

23)
$$y = x^2 + 14x + 48$$

Rationalize the denominator.

24)
$$\frac{\sqrt{5}}{\sqrt{3}+4}$$

A)
$$\frac{\sqrt{15} - 4\sqrt{5}}{7}$$

B)
$$\frac{\sqrt{15} + 4\sqrt{5}}{-13}$$

C)
$$\frac{\sqrt{15} - 4\sqrt{5}}{-13}$$

A)
$$\frac{\sqrt{15} - 4\sqrt{5}}{7}$$
 B) $\frac{\sqrt{15} + 4\sqrt{5}}{-13}$ C) $\frac{\sqrt{15} - 4\sqrt{5}}{-13}$ D) $\frac{3\sqrt{15} + 3\sqrt{5}}{12}$

Find an equation of the line. Write the equation in standard form.

A)
$$-3x + 2y = -24$$
 B) $3x - 2y = -24$ C) $13x - 8y = 4$ D) $-13x - 8y = 4$

B)
$$3x - 2y = -24$$

C)
$$13x - 8y = 4$$

D)
$$-13x - 8y = 4$$

Find the center and the radius of the circle.

26)
$$x^2 + y^2 + 16x - 4y - 13 = 0$$

A) center
$$(-8, 2)$$
, radius = 81

C) center
$$(-8, 2)$$
, radius = 9

B) center
$$(-2, 8)$$
, radius = 9

D) center
$$(8, -2)$$
, radius = 81

Find an equation of the line. Write the equation using function notation.

27) Through (3, -4); perpendicular to
$$x + 5y = -5$$

A)
$$f(x) = 5x - 19$$

B)
$$f(x) = 5x - 11$$

C)
$$f(x) = \frac{1}{5}x - \frac{23}{5}$$

D)
$$f(x) = -\frac{1}{5}x - \frac{17}{5}$$

Perform the indicated operation. Simplify if possible.

28)
$$\frac{12}{x^2 + 4x} + \frac{5}{x} + \frac{3}{x+4}$$

A)
$$\frac{15}{x}$$

B)
$$\frac{5}{x}$$

C)
$$\frac{8}{x}$$

D)
$$\frac{3}{x}$$

Write the solution set using interval notation.

29)
$$5(x + 3) \le 6(x - 8)$$

Simplify.

30)

$$\frac{\frac{3}{x} + \frac{2}{x^2}}{\frac{9}{x^2} - \frac{4}{x}}$$

$$A) \frac{1}{3 - 2x}$$

B)
$$\frac{3x^2 + 2}{9 - 4x}$$

C)
$$\frac{1}{3x - 2}$$

D)
$$\frac{3x + 2}{9 - 4x}$$