MATH 1010 FINAL Fall Semester 2006 Version A

Instructor____ ID Verification: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the equation. 1) $\frac{2x}{5} - \frac{x}{3} = 2$ 1) _____ A) -60B) 30 C) -30D) 60 Solve. 2) $\sqrt{5x+5}+5=0$ 2) _____ A) $\frac{1}{4}$ C) 100 B) 4 D) Ø Solve the equation. 3) $2x^2 + 7x - 4 = 2x + 8$ A) {-4, 3/2} B) {-2, 3} C) $\{-3/2, 4\}$ D) {-3, 2} Use the quadratic formula to solve the equation.

4)
$$x^2 + 16x + 41 = 0$$

A)
$$8 - \sqrt{41}$$
, $8 + \sqrt{41}$
C) $-8 - \sqrt{23}$, $-8 + \sqrt{23}$

B)
$$-16 + \sqrt{41}$$

D) $8 + \sqrt{23}$

5)
$$f(x) = \sqrt{4 - x}$$

5) _____

- $A) \{x \mid x \neq 4\}$

Graph the equation.

6)
$$y = x^3 + 3$$

6)

A)

B)

D)

Factor the polynomial completely.

7)
$$9 - 49x^2$$

7) _____

A)
$$(3 + 7x)(3 - 7x)$$

C)
$$(3 + 7x)^2$$

B)
$$(3 - 7x)^2$$

Solve.

8) Scott set up a volleyball net in his backyard. One of the poles, which forms a right angle with the ground, is 6 feet high. To secure the pole, he attached a rope from the top of the pole to a stake 3 feet from the bottom of the pole. To the nearest tenth of a foot, find the length of the rope.

- A) 45 .0 ft.
- B) 5.2 ft.
- C) 3.0 ft.
- D) 6.7 ft.

Write in terms of i.

9)
$$\sqrt{-169}$$

9) _____

- A) -13i
- B) $-i\sqrt{13}$
- C) 13i
- D) ±13

Find the domain of the rational function.

10)
$$f(x) = \frac{4x}{-7 + x}$$

10) _____

- A) $\{x \mid x \text{ is a real number and } x \neq 7\}$
- B) $\{x \mid x \text{ is a real number and } x \neq 0\}$
- C) $\{x \mid x \text{ is a real number and } x \neq 0, x \neq 7\}$
- D) $\{x \mid x \text{ is a real number and } x \neq -7\}$

Use the properties of exponents to simplify the expression. Write with positive exponents.

11)
$$(b^{2/3})(b^{1/2})$$

- A) $b^{1/3}$
- B) $b^{5/3}$
- C) $b^{7/6}$
- D) $b^{2/5}$

Find the maximum or minimum value of the function.

12)
$$f(x) = 2x^2 - 4x + 7$$

12) _____

A) 5

- B) **-**2
- C) 7

D) 23

Find the indicated value.

13) Find f(-4) when $f(x) = 3x^2 - 2x - 2$

13) _____

A) 48

B) 54

C) 38

D) 58

Find the distance between the pair of points.

14) (6, -1) and (4, -5)

14) _____

- A) $12\sqrt{3}$ units
- B) 2 units
- C) $2\sqrt{5}$ units
- D) 12 units

Solve the equation.

15)
$$6x + 8 + 6x - 8 = 2x + 10x - 3$$

15)

A) 192

B) 0

C) all real numbers

D) Ø

Write as an exponential equation.

16)
$$\log_e \frac{1}{e^3} = -3$$

A)
$$e^{-3} = \frac{1}{e^3}$$

A)
$$e^{-3} = \frac{1}{e^3}$$
 B) $-3^e = \frac{1}{e^3}$

$$C)\left(\frac{1}{e^3}\right)^{-3} = e$$

$$C)\left(\frac{1}{e^3}\right)^{-3} = e \qquad \qquad D)\left(\frac{1}{e^3}\right)^e = -3$$

Graph the equation by plotting points.

17)
$$y = \sqrt{x}$$

C)

B)

D)

Factor the polynomial completely.

18)
$$3x^2 + 11x - 4$$

A)
$$(3x + 4)(x - 1)$$

C)
$$(3x - 1)(x + 4)$$

B)
$$(3x + 1)(x - 4)$$

D)
$$(3x - 4)(x + 1)$$

Write an equation of the line with the given slope and containing the given point. Write the equation in the form y = mx + b.

19)

A)
$$y - 3 = 3x - 4$$
 B) $y + 3 = x + 4$ C) $y = 3x + 9$ D) $y = 3x - 9$

B)
$$y + 3 = x + 4$$

C)
$$y = 3x + 9$$

D)
$$y = 3x - 9$$

Solve the absolute value equation.

20)
$$|6x + 3| = 6$$

20) _____

A)
$$\frac{1}{2}$$
, $-\frac{3}{2}$ B) $-\frac{1}{2}$, $\frac{3}{2}$ C) 1, -3

B)
$$-\frac{1}{2}, \frac{3}{2}$$

Use the formula $A = P(1 + \frac{r}{n})^{nt}$ to find the amount requested.

A: final amount,

P: principal,

r: annual interest rate,

n: number of times the interest is compounded per year, and

t: number of years

21) A principal of \$1,000 is invested in an account paying an annual interest rate of 8%. Find the amount in the account after 3 years if the account is compounded annually.

Solve the system of equations for y.

$$\begin{cases}
5x - 3y = 12 \\
x + 2y = 5
\end{cases}$$

A)
$$y = 1$$

B)
$$y = -3$$
 C) $y = 6$

C)
$$y = 6$$

D)
$$y = 3$$

Graph the union or intersection, as indicated.

23) The union of $2x - y \le 3$ or x + y > 1

23) ____

A)

B)

C)

D)

Multiply or divide as indicated. Simplify completely. $24) \frac{x^2 - 4x + 4}{3x - 6} \div \frac{8x - 16}{24}$

$$24) \frac{x^2 - 4x + 4}{3x - 6} \div \frac{8x - 16}{24}$$

24) _____

A)
$$\frac{(x-2)^2}{9}$$

B) 1

C)
$$\frac{x^2 - 4x + 4}{(x - 2)^2}$$

D) 24

Find an equation of the line.

25) Through (3,-5); parallel to
$$2x - 3y = 9$$

25) _____

A)
$$3x - 2y = 19$$

B)
$$2x + 3y = -1$$

C)
$$2x - 3y = 21$$

A)
$$3x - 2y = 19$$
 B) $2x + 3y = -1$ C) $2x - 3y = 21$ D) $2x - 3y = -21$

Divide.

26)
$$(5x^2 - 6x - 27) \div (x - 3)$$

26) _____

A)
$$x - 6$$

B)
$$5x + 9$$

C)
$$5x - 9$$

A)
$$x - 6$$
 B) $5x + 9$ C) $5x - 9$ D) $5x^2 + 6$

Simplify. Write the answer with positive exponents.

$$27) \frac{(4xy^{-2})^{-2}}{2xy^3}$$

27) _____

A)
$$-\frac{4}{x^3y^{-7}}$$
 B) $\frac{y}{32}$ C) $-\frac{8y}{x^3}$ D) $\frac{y}{32x^3}$

B)
$$\frac{y}{32}$$

$$C) - \frac{8y}{x^3}$$

D)
$$\frac{y}{32x^3}$$

Perform the indicated operation. Write the result in the form a + bi.

28)
$$(1 + 5i)(1 - 5i)$$

A)
$$1 - 25i$$
 B) $1 - 25i^2$ C) -24

29)
$$x^3 + 16x^2 + 64x$$

A)
$$x(x + 8)^2$$

C)
$$x(x - 8)^2$$

B)
$$x(x + 8)(x - 8)$$

30) ____

Graph the function and its inverse on the same set of axes.

30) function
$$y = log_2 x$$
;
inverse $y = 2^x$

Answer Key Testname: MATH 1010 FINAL F06 FORM A

- 1) B
- 2) D
- 3) A 4) C
- 5) D
- 6) B
- 7) A
- 8) D
- 9) C
- 10) A
- 11) C
- 12) A
- 13) B
- 14) C
- 15) D
- 16) A
- 17) D
- 18) C
- 19) C
- 20) A
- 21) D
- 22) D
- 23) B
- 24) B
- 25) C
- 26) B
- 27) D
- 28) D
- 29) A
- 30) A